aws_bedrock_embeddings
Beta
component_type_dropdown::[]
Generates vector embeddings from text prompts, using the AWS Bedrock API.
Introduced in version 4.37.0.
-
Common
-
Advanced
# Common config fields, showing default values
label: ""
aws_bedrock_embeddings:
model: amazon.titan-embed-text-v1 # No default (required)
text: "" # No default (optional)
# All config fields, showing default values
label: ""
aws_bedrock_embeddings:
region: ""
endpoint: ""
credentials:
profile: ""
id: ""
secret: ""
token: ""
from_ec2_role: false
role: ""
role_external_id: ""
model: amazon.titan-embed-text-v1 # No default (required)
text: "" # No default (optional)
This processor sends text prompts to your chosen large language model (LLM), which generates vector embeddings for them using the AWS Bedrock API.
For more information, see the AWS Bedrock documentation.
Fields
model
The ID of the LLM that you want to use to generate vector embeddings. For a full list, see the AWS Bedrock documentation.
Type: string
# Examples
model: amazon.titan-embed-text-v1
model: amazon.titan-embed-text-v2:0
model: cohere.embed-english-v3
model: cohere.embed-multilingual-v3
text
The prompt you want to generate a vector embedding for. The processor submits the entire payload as a string.
Type: string
credentials
Manually configure the AWS credentials to use (optional). For more information, see the Amazon Web Services guide.
Type: object
credentials.secret
The secret for the AWS credentials in use.
This field contains sensitive information that usually shouldn’t be added to a configuration directly. For more information, see Secrets. |
Type: string
Default: ""
credentials.token
The token for the AWS credentials in use. This is a required value for short-term credentials.
Type: string
Default: ""
credentials.from_ec2_role
Use the credentials of a host EC2 machine configured to assume an IAM role associated with the instance.
Type: bool
Default: false
Requires version 4.2.0 or newer